Goal planner backend (#132)

* refactor avghelper

* #59 backend

Co-authored-by: DarK-rtfm <44683230+DarK-rtfm@users.noreply.github.com>
This commit is contained in:
annon 2022-11-17 13:41:16 +01:00 committed by GitHub
parent 4b40692fe1
commit da12ac8646
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 133 additions and 18 deletions

View File

@ -1,26 +1,24 @@
// ignore_for_file: no_leading_underscores_for_local_identifiers
import 'package:filcnaplo_kreta_api/models/grade.dart'; import 'package:filcnaplo_kreta_api/models/grade.dart';
class AverageHelper { class AverageHelper {
static double averageEvals(List<Grade> grades, {bool finalAvg = false}) { static double averageEvals(List<Grade> grades, {bool finalAvg = false}) {
double average = 0.0;
List<String> ignoreInFinal = ["5,SzorgalomErtek", "4,MagatartasErtek"]; List<String> ignoreInFinal = ["5,SzorgalomErtek", "4,MagatartasErtek"];
if (finalAvg) grades.removeWhere((e) => (e.value.value == 0) || (ignoreInFinal.contains(e.gradeType?.id)));
if (finalAvg) { double average =
grades.removeWhere((e) => grades.map((e) => e.value.value * e.value.weight / 100.0).fold(0.0, (double a, double b) => a + b) / weightSum(grades, finalAvg: finalAvg);
(e.value.value == 0) ||
(ignoreInFinal.contains(e.gradeType?.id)));
}
for (var e in grades) {
average += e.value.value * ((finalAvg ? 100 : e.value.weight) / 100);
}
average = average /
grades
.map((e) => (finalAvg ? 100 : e.value.weight) / 100)
.fold(0.0, (a, b) => a + b);
return average.isNaN ? 0.0 : average; return average.isNaN ? 0.0 : average;
} }
}
static double weightSum(List<Grade> grades, {bool finalAvg = false}) =>
grades.map((e) => finalAvg ? 1 : e.value.weight / 100).fold(0, (a, b) => a + b);
static int howManyNeeded(int grade, List<Grade> base, double goal, {bool filcgrade = true, double avg = 0, double wsum = 0}) {
double _avg = filcgrade ? averageEvals(base) : avg;
double _wsum = filcgrade ? weightSum(base) : wsum;
if (_avg >= goal) return 0;
return (_wsum * (_avg - goal) / (goal - grade)).ceil();
}
}

View File

@ -0,0 +1,117 @@
/*
* Maintainer: DarK
* Translated from C version
* ##Please do NOT modify if you don't know whats going on##
*
* Issue: #59
*
* Future changes / ideas:
* - `best` should be configurable
*/
import 'dart:math';
import 'package:filcnaplo/helpers/average_helper.dart';
import 'package:filcnaplo_kreta_api/models/grade.dart';
/// Generate list of grades that achieve the wanted goal.
/// After generating possible options, it (when doing so would NOT result in empty list) filters with two criteria:
/// - Plan should not contain more than 15 grades
/// - Plan should not contain only one type of grade
///
/// **Usage**:
///
/// ```dart
/// List<int> GoalPlanner(double goal, List<Grade> grades).solve().plan
/// ```
class GoalPlanner {
final double goal;
final List<Grade> grades;
List<Plan> plans = [];
GoalPlanner(this.goal, this.grades);
bool _allowed(int grade) => grade > goal;
Avg _addToAvg(Avg base, int grade, int n) => Avg((base.avg * base.n + grade * n) / (base.n + n), base.n + n);
List<T> _addToList<T>(List<T> l, T e, int n) {
if (n == 0) return l;
List<T> tmp = l;
for (int i = 0; i < n; i++) tmp.add(e);
return tmp;
}
void _generate(Generator g) {
// Exit condition 1: Generator has working plan.
if (g.currentAvg.avg >= goal) {
plans.add(Plan(g.plan));
return;
}
// Exit condition 2: Generator plan will never work.
if (!_allowed(g.gradeToAdd)) return;
for (int i = 0; i < g.max; i++) {
int newGradeToAdd = g.gradeToAdd - 1;
List<int> newPlan = _addToList<int>(g.plan, g.gradeToAdd, i);
Avg newAvg = _addToAvg(g.currentAvg, g.gradeToAdd, i);
int newN = AverageHelper.howManyNeeded(newGradeToAdd, [], goal);
_generate(Generator(newGradeToAdd, newN, newAvg, newPlan));
}
}
Plan solve() {
_generate(
Generator(
5,
AverageHelper.howManyNeeded(
5,
[],
goal,
filcgrade: false,
avg: AverageHelper.averageEvals(grades),
wsum: AverageHelper.weightSum(grades),
),
Avg(AverageHelper.averageEvals(grades), AverageHelper.weightSum(grades)),
[],
),
);
// Calculate Statistics
plans.forEach((e) {
e.sum = e.plan.fold(0, (int a, b) => a + b);
e.avg = e.sum / e.plan.length;
e.sigma = sqrt(e.plan.map((i) => pow(i - e.avg, 2)).fold(0, (num a, b) => a + b) / e.plan.length);
});
// filter without aggression
if (plans.where((e) => e.plan.length < 15).isNotEmpty) plans.removeWhere((e) => !(e.plan.length < 15));
if (plans.where((e) => e.sigma > 1).isNotEmpty) plans.removeWhere((e) => !(e.sigma > 1));
return plans[Random().nextInt(plans.length)];
}
}
class Avg {
final double avg;
final double n;
Avg(this.avg, this.n);
}
class Generator {
final int gradeToAdd;
final int max;
final Avg currentAvg;
final List<int> plan;
Generator(this.gradeToAdd, this.max, this.currentAvg, this.plan);
}
class Plan {
final List<int> plan;
int sum = 0;
double avg = 0;
int med = 0; // currently
int mod = 0; // unused
double sigma = 0;
Plan(this.plan);
}