Revert Optimize transformRect (#37049)
* Revert "Optimize the transformRect and transformPoint methods in matrix_utils. (#36396)" This reverts commit 9946f7cff9621bf23c22508e7b2529e4126f7f05. * add test
This commit is contained in:
parent
51d2d3511c
commit
bf3a907ce7
@ -2,6 +2,7 @@
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
import 'dart:math' as math;
|
||||
import 'dart:typed_data';
|
||||
|
||||
import 'package:flutter/foundation.dart';
|
||||
@ -123,22 +124,9 @@ class MatrixUtils {
|
||||
/// This function assumes the given point has a z-coordinate of 0.0. The
|
||||
/// z-coordinate of the result is ignored.
|
||||
static Offset transformPoint(Matrix4 transform, Offset point) {
|
||||
final Float64List storage = transform.storage;
|
||||
final double x = point.dx;
|
||||
final double y = point.dy;
|
||||
|
||||
// Directly simulate the transform of the vector (x, y, 0, 1),
|
||||
// dropping the resulting Z coordinate, and normalizing only
|
||||
// if needed.
|
||||
|
||||
final double rx = storage[0] * x + storage[4] * y + storage[12];
|
||||
final double ry = storage[1] * x + storage[5] * y + storage[13];
|
||||
final double rw = storage[3] * x + storage[7] * y + storage[15];
|
||||
if (rw == 1.0) {
|
||||
return Offset(rx, ry);
|
||||
} else {
|
||||
return Offset(rx / rw, ry / rw);
|
||||
}
|
||||
final Vector3 position3 = Vector3(point.dx, point.dy, 0.0);
|
||||
final Vector3 transformed3 = transform.perspectiveTransform(position3);
|
||||
return Offset(transformed3.x, transformed3.y);
|
||||
}
|
||||
|
||||
/// Returns a rect that bounds the result of applying the given matrix as a
|
||||
@ -148,227 +136,23 @@ class MatrixUtils {
|
||||
/// The transformed rect is then projected back into the plane with z equals
|
||||
/// 0.0 before computing its bounding rect.
|
||||
static Rect transformRect(Matrix4 transform, Rect rect) {
|
||||
final Float64List storage = transform.storage;
|
||||
final double x = rect.left;
|
||||
final double y = rect.top;
|
||||
final double w = rect.right - x;
|
||||
final double h = rect.bottom - y;
|
||||
|
||||
// Transforming the 4 corners of a rectangle the straightforward way
|
||||
// incurs the cost of transforming 4 points using vector math which
|
||||
// involves 48 multiplications and 48 adds and then normalizing
|
||||
// the points using 4 inversions of the homogeneous weight factor
|
||||
// and then 12 multiplies. Once we have transformed all of the points
|
||||
// we then need to turn them into a bounding box using 4 min/max
|
||||
// operations each on 4 values yielding 12 total comparisons.
|
||||
//
|
||||
// On top of all of those operations, using the vector_math package to
|
||||
// do the work for us involves allocating several objects in order to
|
||||
// communicate the values back and forth - 4 allocating getters to extract
|
||||
// the [Offset] objects for the corners of the [Rect], 4 conversions to
|
||||
// a [Vector3] to use [Matrix4.perspectiveTransform()], and then 4 new
|
||||
// [Offset] objects allocated to hold those results, yielding 8 [Offset]
|
||||
// and 4 [Vector3] object allocations per rectangle transformed.
|
||||
//
|
||||
// But the math we really need to get our answer is actually much less
|
||||
// than that.
|
||||
//
|
||||
// First, consider that a full point transform using the vector math
|
||||
// package involves expanding it out into a vector3 with a Z coordinate
|
||||
// of 0.0 and then performing 3 multiplies and 3 adds per coordinate:
|
||||
// ```
|
||||
// xt = x*m00 + y*m10 + z*m20 + m30;
|
||||
// yt = x*m01 + y*m11 + z*m21 + m31;
|
||||
// zt = x*m02 + y*m12 + z*m22 + m32;
|
||||
// wt = x*m03 + y*m13 + z*m23 + m33;
|
||||
// ```
|
||||
// Immediately we see that we can get rid of the 3rd column of multiplies
|
||||
// since we know that Z=0.0. We can also get rid of the 3rd row because
|
||||
// we ignore the resulting Z coordinate. Finally we can get rid of the
|
||||
// last row if we don't have a perspective transform since we can verify
|
||||
// that the results are 1.0 for all points. This gets us down to 16
|
||||
// multiplies and 16 adds in the non-perspective case and 24 of each for
|
||||
// the perspective case. (Plus the 12 comparisons to turn them back into
|
||||
// a bounding box.)
|
||||
//
|
||||
// But we can do even better than that.
|
||||
//
|
||||
// Under optimal conditions of no perspective transformation,
|
||||
// which is actually a very common condition, we can transform
|
||||
// a rectangle in as little as 3 operations:
|
||||
//
|
||||
// (rx,ry) = transform of upper left corner of rectangle
|
||||
// (wx,wy) = delta transform of the (w, 0) width relative vector
|
||||
// (hx,hy) = delta transform of the (0, h) height relative vector
|
||||
//
|
||||
// A delta transform is a transform of all elements of the matrix except
|
||||
// for the translation components. The translation components are added
|
||||
// in at the end of each transform computation so they represent a
|
||||
// constant offset for each point transformed. A delta transform of
|
||||
// a horizontal or vertical vector involves a single multiplication due
|
||||
// to the fact that it only has one non-zero coordinate and no addition
|
||||
// of the translation component.
|
||||
//
|
||||
// In the absence of a perspective transform, the transformed
|
||||
// rectangle will be mapped into a parallelogram with corners at:
|
||||
// corner1 = (rx, ry)
|
||||
// corner2 = corner1 + dTransformed width vector = (rx+wx, ry+wy)
|
||||
// corner3 = corner1 + dTransformed height vector = (rx+hx, ry+hy)
|
||||
// corner4 = corner1 + both dTransformed vectors = (rx+wx+hx, ry+wy+hy)
|
||||
// In all, this method of transforming the rectangle requires only
|
||||
// 8 multiplies and 12 additions (which we can reduce to 8 additions if
|
||||
// we only need a bounding box, see below).
|
||||
//
|
||||
// In the presence of a perspective transform, the above conditions
|
||||
// continue to hold with respect to the non-normalized coordinates so
|
||||
// we can still save a lot of multiplications by computing the 4
|
||||
// non-normalized coordinates using relative additions before we normalize
|
||||
// them and they lose their "pseudo-parallelogram" relationships. We still
|
||||
// have to do the normalization divisions and min/max all 4 points to
|
||||
// get the resulting transformed bounding box, but we save a lot of
|
||||
// calculations over blindly transforming all 4 coordinates independently.
|
||||
// In all, we need 12 multiplies and 22 additions to construct the
|
||||
// non-normalized vectors and then 8 divisions (or 4 inversions and 8
|
||||
// multiplies) for normalization (plus the standard set of 12 comparisons
|
||||
// for the min/max bounds operations).
|
||||
//
|
||||
// Back to the non-perspective case, the optimization that lets us get
|
||||
// away with fewer additions if we only need a bounding box comes from
|
||||
// analyzing the impact of the relative vectors on expanding the
|
||||
// bounding box of the parallelogram. First, the bounding box always
|
||||
// contains the transformed upper-left corner of the rectangle. Next,
|
||||
// each relative vector either pushes on the left or right side of the
|
||||
// bounding box and also either the top or bottom side, depending on
|
||||
// whether it is positive or negative. Finally, you can consider the
|
||||
// impact of each vector on the bounding box independently. If, say,
|
||||
// wx and hx have the same sign, then the limiting point in the bounding
|
||||
// box will be the one that involves adding both of them to the origin
|
||||
// point. If they have opposite signs, then one will push one wall one
|
||||
// way and the other will push the opposite wall the other way and when
|
||||
// you combine both of them, the resulting "opposite corner" will
|
||||
// actually be between the limits they established by pushing the walls
|
||||
// away from each other, as below:
|
||||
// ```
|
||||
// +---------(originx,originy)--------------+
|
||||
// | -----^---- |
|
||||
// | ----- ---- |
|
||||
// | ----- ---- |
|
||||
// (+hx,+hy)< ---- |
|
||||
// | ---- ---- |
|
||||
// | ---- >(+wx,+wy)
|
||||
// | ---- ----- |
|
||||
// | ---- ----- |
|
||||
// | ---- ----- |
|
||||
// | v |
|
||||
// +---------------(+wx+hx,+wy+hy)----------+
|
||||
// ```
|
||||
// In this diagram, consider that:
|
||||
// ```
|
||||
// wx would be a positive number
|
||||
// hx would be a negative number
|
||||
// wy and hy would both be positive numbers
|
||||
// ```
|
||||
// As a result, wx pushes out the right wall, hx pushes out the left wall,
|
||||
// and both wy and hy push down the bottom wall of the bounding box. The
|
||||
// wx,hx pair (of opposite signs) worked on opposite walls and the final
|
||||
// opposite corner had an X coordinate between the limits they established.
|
||||
// The wy,hy pair (of the same sign) both worked together to push the
|
||||
// bottom wall down by their sum.
|
||||
//
|
||||
// This relationship allows us to simply start with the point computed by
|
||||
// transforming the upper left corner of the rectangle, and then
|
||||
// conditionally adding wx, wy, hx, and hy to either the left or top
|
||||
// or right or bottom of the bounding box independently depending on sign.
|
||||
// In that case we only need 4 comparisons and 4 additions total to
|
||||
// compute the bounding box, combined with the 8 multiplications and
|
||||
// 4 additions to compute the transformed point and relative vectors
|
||||
// for a total of 8 multiplies, 8 adds, and 4 comparisons.
|
||||
//
|
||||
// An astute observer will note that we do need to do 2 subtractions at
|
||||
// the top of the method to compute the width and height. Add those to
|
||||
// all of the relative solutions listed above. The test for perspective
|
||||
// also adds 3 compares to the affine case and up to 3 compares to the
|
||||
// perspective case (depending on which test fails, the rest are omitted).
|
||||
//
|
||||
// The final tally:
|
||||
// basic method = 60 mul + 48 add + 12 compare
|
||||
// optimized perspective = 12 mul + 22 add + 15 compare + 2 sub
|
||||
// optimized affine = 8 mul + 8 add + 7 compare + 2 sub
|
||||
//
|
||||
// Since compares are essentially subtractions and subtractions are
|
||||
// the same cost as adds, we end up with:
|
||||
// basic method = 60 mul + 60 add/sub/compare
|
||||
// optimized perspective = 12 mul + 39 add/sub/compare
|
||||
// optimized affine = 8 mul + 17 add/sub/compare
|
||||
|
||||
final double wx = storage[0] * w;
|
||||
final double hx = storage[4] * h;
|
||||
final double rx = storage[0] * x + storage[4] * y + storage[12];
|
||||
|
||||
final double wy = storage[1] * w;
|
||||
final double hy = storage[5] * h;
|
||||
final double ry = storage[1] * x + storage[5] * y + storage[13];
|
||||
|
||||
if (storage[3] == 0.0 && storage[7] == 0.0 && storage[15] == 1.0) {
|
||||
double left = rx;
|
||||
double right = rx;
|
||||
if (wx < 0) {
|
||||
left += wx;
|
||||
} else {
|
||||
right += wx;
|
||||
}
|
||||
if (hx < 0) {
|
||||
left += hx;
|
||||
} else {
|
||||
right += hx;
|
||||
}
|
||||
|
||||
double top = ry;
|
||||
double bottom = ry;
|
||||
if (wy < 0) {
|
||||
top += wy;
|
||||
} else {
|
||||
bottom += wy;
|
||||
}
|
||||
if (hy < 0) {
|
||||
top += hy;
|
||||
} else {
|
||||
bottom += hy;
|
||||
}
|
||||
|
||||
return Rect.fromLTRB(left, top, right, bottom);
|
||||
} else {
|
||||
final double ww = storage[3] * w;
|
||||
final double hw = storage[7] * h;
|
||||
final double rw = storage[3] * x + storage[7] * y + storage[15];
|
||||
|
||||
final double ulx = rx / rw;
|
||||
final double uly = ry / rw;
|
||||
final double urx = (rx + wx) / (rw + ww);
|
||||
final double ury = (ry + wy) / (rw + ww);
|
||||
final double llx = (rx + hx) / (rw + hw);
|
||||
final double lly = (ry + hy) / (rw + hw);
|
||||
final double lrx = (rx + wx + hx) / (rw + ww + hw);
|
||||
final double lry = (ry + wy + hy) / (rw + ww + hw);
|
||||
|
||||
final Offset point1 = transformPoint(transform, rect.topLeft);
|
||||
final Offset point2 = transformPoint(transform, rect.topRight);
|
||||
final Offset point3 = transformPoint(transform, rect.bottomLeft);
|
||||
final Offset point4 = transformPoint(transform, rect.bottomRight);
|
||||
return Rect.fromLTRB(
|
||||
_min4(ulx, urx, llx, lrx),
|
||||
_min4(uly, ury, lly, lry),
|
||||
_max4(ulx, urx, llx, lrx),
|
||||
_max4(uly, ury, lly, lry),
|
||||
_min4(point1.dx, point2.dx, point3.dx, point4.dx),
|
||||
_min4(point1.dy, point2.dy, point3.dy, point4.dy),
|
||||
_max4(point1.dx, point2.dx, point3.dx, point4.dx),
|
||||
_max4(point1.dy, point2.dy, point3.dy, point4.dy),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
static double _min4(double a, double b, double c, double d) {
|
||||
final double e = (a < b) ? a : b;
|
||||
final double f = (c < d) ? c : d;
|
||||
return (e < f) ? e : f;
|
||||
return math.min(a, math.min(b, math.min(c, d)));
|
||||
}
|
||||
static double _max4(double a, double b, double c, double d) {
|
||||
final double e = (a > b) ? a : b;
|
||||
final double f = (c > d) ? c : d;
|
||||
return (e > f) ? e : f;
|
||||
return math.max(a, math.max(b, math.max(c, d)));
|
||||
}
|
||||
|
||||
/// Returns a rect that bounds the result of applying the inverse of the given
|
||||
|
@ -9,6 +9,13 @@ import 'package:flutter/painting.dart';
|
||||
import 'package:vector_math/vector_math_64.dart';
|
||||
|
||||
void main() {
|
||||
test('MatrixUtils.transformRect handles very small values', () {
|
||||
const Rect evilRect = Rect.fromLTRB(0.0, -1.7976931348623157e+308, 800.0, 1.7976931348623157e+308);
|
||||
final Matrix4 transform = Matrix4.identity()..translate(10.0, 0.0);
|
||||
final Rect transformedRect = MatrixUtils.transformRect(transform, evilRect);
|
||||
expect(transformedRect.isFinite, true);
|
||||
});
|
||||
|
||||
test('MatrixUtils.getAsTranslation()', () {
|
||||
Matrix4 test;
|
||||
test = Matrix4.identity();
|
||||
@ -121,78 +128,4 @@ void main() {
|
||||
forcedOffset,
|
||||
);
|
||||
});
|
||||
|
||||
test('transformRect with no perspective (w = 1)', () {
|
||||
const Rect rectangle20x20 = Rect.fromLTRB(10, 20, 30, 40);
|
||||
|
||||
// Identity
|
||||
expect(
|
||||
MatrixUtils.transformRect(Matrix4.identity(), rectangle20x20),
|
||||
rectangle20x20,
|
||||
);
|
||||
|
||||
// 2D Scaling
|
||||
expect(
|
||||
MatrixUtils.transformRect(Matrix4.diagonal3Values(2, 2, 2), rectangle20x20),
|
||||
const Rect.fromLTRB(20, 40, 60, 80),
|
||||
);
|
||||
|
||||
// Rotation
|
||||
expect(
|
||||
MatrixUtils.transformRect(Matrix4.rotationZ(pi / 2.0), rectangle20x20),
|
||||
within<Rect>(distance: 0.00001, from: const Rect.fromLTRB(-40.0, 10.0, -20.0, 30.0)),
|
||||
);
|
||||
});
|
||||
|
||||
test('transformRect with perspective (w != 1)', () {
|
||||
final Matrix4 transform = MatrixUtils.createCylindricalProjectionTransform(
|
||||
radius: 10.0,
|
||||
angle: pi / 8.0,
|
||||
perspective: 0.3,
|
||||
);
|
||||
|
||||
for (int i = 1; i < 10000; i++) {
|
||||
final Rect rect = Rect.fromLTRB(11.0 * i, 12.0 * i, 15.0 * i, 18.0 * i);
|
||||
final Rect golden = _vectorWiseTransformRect(transform, rect);
|
||||
expect(
|
||||
MatrixUtils.transformRect(transform, rect),
|
||||
within<Rect>(distance: 0.00001, from: golden),
|
||||
);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Produces the same computation as `MatrixUtils.transformPoint` but it uses
|
||||
// the built-in perspective transform methods in the Matrix4 class as a
|
||||
// golden implementation of the optimized `MatrixUtils.transformPoint`
|
||||
// to make sure optimizations do not contain bugs.
|
||||
Offset _transformPoint(Matrix4 transform, Offset point) {
|
||||
final Vector3 position3 = Vector3(point.dx, point.dy, 0.0);
|
||||
final Vector3 transformed3 = transform.perspectiveTransform(position3);
|
||||
return Offset(transformed3.x, transformed3.y);
|
||||
}
|
||||
|
||||
// Produces the same computation as `MatrixUtils.transformRect` but it does this
|
||||
// one point at a time. This function is used as the golden implementation of the
|
||||
// optimized `MatrixUtils.transformRect` to make sure optimizations do not contain
|
||||
// bugs.
|
||||
Rect _vectorWiseTransformRect(Matrix4 transform, Rect rect) {
|
||||
final Offset point1 = _transformPoint(transform, rect.topLeft);
|
||||
final Offset point2 = _transformPoint(transform, rect.topRight);
|
||||
final Offset point3 = _transformPoint(transform, rect.bottomLeft);
|
||||
final Offset point4 = _transformPoint(transform, rect.bottomRight);
|
||||
return Rect.fromLTRB(
|
||||
_min4(point1.dx, point2.dx, point3.dx, point4.dx),
|
||||
_min4(point1.dy, point2.dy, point3.dy, point4.dy),
|
||||
_max4(point1.dx, point2.dx, point3.dx, point4.dx),
|
||||
_max4(point1.dy, point2.dy, point3.dy, point4.dy),
|
||||
);
|
||||
}
|
||||
|
||||
double _min4(double a, double b, double c, double d) {
|
||||
return min(a, min(b, min(c, d)));
|
||||
}
|
||||
|
||||
double _max4(double a, double b, double c, double d) {
|
||||
return max(a, max(b, max(c, d)));
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user