`flutter build aar`
This new build command works just like `flutter build apk` or `flutter build appbundle`, but for plugin and module projects.
This PR also refactors how plugins are included in app or module projects. By building the plugins as AARs, the Android Gradle plugin is able to use Jetifier to translate support libraries into AndroidX libraries for all the plugin's native code. Thus, reducing the error rate when using AndroidX in apps.
This change also allows to build modules as AARs, so developers can take these artifacts and distribute them along with the native host app without the need of the Flutter tool. This is a requirement for add to app.
`flutter build aar` generates POM artifacts (XML files) which contain metadata about the native dependencies used by the plugin. This allows Gradle to resolve dependencies at the app level. The result of this new build command is a single build/outputs/repo, the local repository that contains all the generated AARs and POM files.
In a Flutter app project, this local repo is used by the Flutter Gradle plugin to resolve the plugin dependencies. In add to app case, the developer needs to configure the local repo and the dependency manually in `build.gradle`:
repositories {
maven {
url "<path-to-flutter-module>build/host/outputs/repo"
}
}
dependencies {
implementation("<package-name>:flutter_<build-mode>:1.0@aar") {
transitive = true
}
}
`flutter build aar`
This new build command works just like `flutter build apk` or `flutter build appbundle`, but for plugin and module projects.
This PR also refactors how plugins are included in app or module projects. By building the plugins as AARs, the Android Gradle plugin is able to use Jetifier to translate support libraries into AndroidX libraries for all the plugin's native code. Thus, reducing the error rate when using AndroidX in apps.
This change also allows to build modules as AARs, so developers can take these artifacts and distribute them along with the native host app without the need of the Flutter tool. This is a requirement for add to app.
`flutter build aar` generates POM artifacts (XML files) which contain metadata about the native dependencies used by the plugin. This allows Gradle to resolve dependencies at the app level. The result of this new build command is a single build/outputs/repo, the local repository that contains all the generated AARs and POM files.
In a Flutter app project, this local repo is used by the Flutter Gradle plugin to resolve the plugin dependencies. In add to app case, the developer needs to configure the local repo and the dependency manually in `build.gradle`:
repositories {
maven {
url "<path-to-flutter-module>build/host/outputs/repo"
}
}
dependencies {
implementation("<package-name>:flutter_<build-mode>:1.0@aar") {
transitive = true
}
}
Added a PluginRegistry to the new project template. The registry files will be automatically updated at build time to register the native plugins.
Fixes#7814.
Gradle projects are evaluated in lexicographical order, and the plugin
projects are at the same level as the :app project, so if a plugin has
a name that comes before 'app' (like, for example, any name that starts
with a capital letter), the plugin project will be evaluated before
:app.
Since :app applies the Flutter Gradle plugin, which tries to
modify the dependencies of the plugin projects, we have a problem if the
plugin projects have already been evaluated. Adding
evaluationDependsOn(':app') to the plugin projects fixes this.
Updated example projects to the latest (plugin-enabled) Gradle build
files.
Also removed two unused imports in `pluginClass.java.tmpl`.
Plugin projects are created by running `flutter create --plugin <name>`.
An example app is also created in the plugin project, using the normal 'create' template, which has been modified to allow for conditional plugin code.
Modified the android package name to match package naming conventions (all lower-case, and must match the directory name).