2016-03-12 11:37:39 -08:00

500 lines
18 KiB
Dart

// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
import 'dart:math' as math;
import 'dart:typed_data';
import 'box.dart';
import 'object.dart';
import 'viewport.dart';
bool _debugIsMonotonic(List<double> offsets) {
bool result = true;
assert(() {
double current = 0.0;
for (double offset in offsets) {
if (current > offset) {
result = false;
break;
}
current = offset;
}
return true;
});
return result;
}
List<double> _generateRegularOffsets(int count, double size) {
final int length = count + 1;
final List<double> result = new Float64List(length);
for (int i = 0; i < length; ++i)
result[i] = i * size;
return result;
}
class GridSpecification {
/// Creates a grid specification from an explicit list of offsets.
GridSpecification.fromOffsets({
this.columnOffsets,
this.rowOffsets,
this.columnSpacing: 0.0,
this.rowSpacing: 0.0,
this.padding: EdgeDims.zero
}) {
assert(_debugIsMonotonic(columnOffsets));
assert(_debugIsMonotonic(rowOffsets));
assert(columnSpacing != null && columnSpacing >= 0.0);
assert(rowSpacing != null && rowSpacing >= 0.0);
assert(padding != null && padding.isNonNegative);
}
/// Creates a grid specification containing a certain number of equally sized tiles.
/// The tileWidth is the sum of the width of the child it will contain and
/// columnSpacing (even if columnCount is 1). Similarly tileHeight is child's height
/// plus rowSpacing. If the tiles are to completely fill the grid, then their size
/// should be based on the grid's padded interior.
GridSpecification.fromRegularTiles({
double tileWidth,
double tileHeight,
int columnCount,
int rowCount,
this.rowSpacing: 0.0,
this.columnSpacing: 0.0,
this.padding: EdgeDims.zero
}) : columnOffsets = _generateRegularOffsets(columnCount, tileWidth),
rowOffsets = _generateRegularOffsets(rowCount, tileHeight) {
assert(_debugIsMonotonic(columnOffsets));
assert(_debugIsMonotonic(rowOffsets));
assert(columnSpacing != null && columnSpacing >= 0.0);
assert(rowSpacing != null && rowSpacing >= 0.0);
assert(padding != null && padding.isNonNegative);
}
/// The offsets of the column boundaries in the grid.
///
/// The first offset is the offset of the left edge of the left-most column
/// from the left edge of the interior of the grid's padding (0.0 if the padding
/// is EdgeOffsets.zero). The last offset is the offset of the right edge of
/// the right-most column from the left edge of the interior of the grid's padding.
///
/// If there are n columns in the grid, there should be n + 1 entries in this
/// list. The right edge of the last column is defined as columnOffsets(n), i.e.
/// the left edge of an extra column.
final List<double> columnOffsets;
/// The offsets of the row boundaries in the grid.
///
/// The first offset is the offset of the top edge of the top-most row from
/// the top edge of the interior of the grid's padding (usually if the padding
/// is EdgeOffsets.zero). The last offset is the offset of the bottom edge of
/// the bottom-most column from the top edge of the interior of the grid's padding.
///
/// If there are n rows in the grid, there should be n + 1 entries in this
/// list. The bottom edge of the last row is defined as rowOffsets(n), i.e.
/// the top edge of an extra row.
final List<double> rowOffsets;
/// The vertical distance between rows.
final double rowSpacing;
/// The horizontal distance between columns.
final double columnSpacing;
/// The interior padding of the grid.
///
/// The grid's size encloses the spaced rows and columns and is then inflated
/// by the padding.
final EdgeDims padding;
/// The size of the grid.
Size get gridSize => new Size(columnOffsets.last + padding.horizontal, rowOffsets.last + padding.vertical);
/// The number of columns in this grid.
int get columnCount => columnOffsets.length - 1;
/// The number of rows in this grid.
int get rowCount => rowOffsets.length - 1;
}
/// Where to place a child within a grid.
class GridChildPlacement {
GridChildPlacement({
this.column,
this.row,
this.columnSpan: 1,
this.rowSpan: 1
}) {
assert(column != null && column >= 0);
assert(row != null && row >= 0);
assert(columnSpan != null && columnSpan > 0);
assert(rowSpan != null && rowSpan > 0);
}
/// The column in which to place the child.
final int column;
/// The row in which to place the child.
final int row;
/// How many columns the child should span.
final int columnSpan;
/// How many rows the child should span.
final int rowSpan;
}
/// An abstract interface to control the layout of a [RenderGrid].
abstract class GridDelegate {
/// Override this function to control size of the columns and rows.
GridSpecification getGridSpecification(BoxConstraints constraints, int childCount);
/// Override this function to control where children are placed in the grid.
GridChildPlacement getChildPlacement(GridSpecification specification, int index, Object placementData);
/// Override this method to return true when the children need to be laid out.
bool shouldRelayout(GridDelegate oldDelegate) => true;
Size _getGridSize(BoxConstraints constraints, int childCount) {
return getGridSpecification(constraints, childCount).gridSize;
}
/// Returns the minimum width that this grid could be without failing to paint
/// its contents within itself.
double getMinIntrinsicWidth(BoxConstraints constraints, int childCount) {
return constraints.constrainWidth(_getGridSize(constraints, childCount).width);
}
/// Returns the smallest width beyond which increasing the width never
/// decreases the preferred height.
double getMaxIntrinsicWidth(BoxConstraints constraints, int childCount) {
return constraints.constrainWidth(_getGridSize(constraints, childCount).width);
}
/// Return the minimum height that this grid could be without failing to paint
/// its contents within itself.
double getMinIntrinsicHeight(BoxConstraints constraints, int childCount) {
return constraints.constrainHeight(_getGridSize(constraints, childCount).height);
}
/// Returns the smallest height beyond which increasing the height never
/// decreases the preferred width.
double getMaxIntrinsicHeight(BoxConstraints constraints, int childCount) {
return constraints.constrainHeight(_getGridSize(constraints, childCount).height);
}
}
/// A [GridDelegate] the places its children in order throughout the grid.
abstract class GridDelegateWithInOrderChildPlacement extends GridDelegate {
GridDelegateWithInOrderChildPlacement({
this.columnSpacing: 0.0,
this.rowSpacing: 0.0,
this.padding: EdgeDims.zero
}) {
assert(columnSpacing != null && columnSpacing >= 0.0);
assert(rowSpacing != null && rowSpacing >= 0.0);
assert(padding != null && padding.isNonNegative);
}
/// The horizontal distance between columns.
final double columnSpacing;
/// The vertical distance between rows.
final double rowSpacing;
// Insets for the entire grid.
final EdgeDims padding;
GridChildPlacement getChildPlacement(GridSpecification specification, int index, Object placementData) {
final int columnCount = specification.columnOffsets.length - 1;
return new GridChildPlacement(
column: index % columnCount,
row: index ~/ columnCount
);
}
bool shouldRelayout(GridDelegateWithInOrderChildPlacement oldDelegate) {
return columnSpacing != oldDelegate.columnSpacing
|| rowSpacing != oldDelegate.rowSpacing
|| padding != oldDelegate.padding;
}
}
/// A [GridDelegate] that divides the grid's width evenly amount a fixed number of columns.
class FixedColumnCountGridDelegate extends GridDelegateWithInOrderChildPlacement {
FixedColumnCountGridDelegate({
this.columnCount,
double columnSpacing: 0.0,
double rowSpacing: 0.0,
EdgeDims padding: EdgeDims.zero,
this.tileAspectRatio: 1.0
}) : super(columnSpacing: columnSpacing, rowSpacing: rowSpacing, padding: padding) {
assert(columnCount != null && columnCount >= 0);
assert(tileAspectRatio != null && tileAspectRatio > 0.0);
}
/// The number of columns in the grid.
final int columnCount;
/// The ratio of the width to the height of each tile in the grid.
final double tileAspectRatio;
GridSpecification getGridSpecification(BoxConstraints constraints, int childCount) {
assert(constraints.maxWidth < double.INFINITY);
int rowCount = (childCount / columnCount).ceil();
double tileWidth = math.max(0.0, constraints.maxWidth - padding.horizontal + columnSpacing) / columnCount;
double tileHeight = tileWidth / tileAspectRatio;
return new GridSpecification.fromRegularTiles(
tileWidth: tileWidth,
tileHeight: tileHeight,
columnCount: columnCount,
rowCount: rowCount,
columnSpacing: columnSpacing,
rowSpacing: rowSpacing,
padding: padding
);
}
bool shouldRelayout(FixedColumnCountGridDelegate oldDelegate) {
return columnCount != oldDelegate.columnCount
|| tileAspectRatio != oldDelegate.tileAspectRatio
|| super.shouldRelayout(oldDelegate);
}
double getMinIntrinsicWidth(BoxConstraints constraints, int childCount) {
return constraints.constrainWidth(0.0);
}
double getMaxIntrinsicWidth(BoxConstraints constraints, int childCount) {
return constraints.constrainWidth(0.0);
}
}
/// A [GridDelegate] that fills the width with a variable number of tiles.
///
/// This delegate will select a tile width that is as large as possible subject
/// to the following conditions:
///
/// - The tile width evenly divides the width of the grid.
/// - The tile width is at most [maxTileWidth].
///
class MaxTileWidthGridDelegate extends GridDelegateWithInOrderChildPlacement {
MaxTileWidthGridDelegate({
this.maxTileWidth,
this.tileAspectRatio: 1.0,
double columnSpacing: 0.0,
double rowSpacing: 0.0,
EdgeDims padding: EdgeDims.zero
}) : super(columnSpacing: columnSpacing, rowSpacing: rowSpacing, padding: padding) {
assert(maxTileWidth != null && maxTileWidth >= 0.0);
assert(tileAspectRatio != null && tileAspectRatio > 0.0);
}
/// The maximum width of a tile in the grid.
final double maxTileWidth;
/// The ratio of the width to the height of each tile in the grid.
final double tileAspectRatio;
GridSpecification getGridSpecification(BoxConstraints constraints, int childCount) {
assert(constraints.maxWidth < double.INFINITY);
final double gridWidth = math.max(0.0, constraints.maxWidth - padding.horizontal);
int columnCount = (gridWidth / maxTileWidth).ceil();
int rowCount = (childCount / columnCount).ceil();
double tileWidth = gridWidth / columnCount;
double tileHeight = tileWidth / tileAspectRatio;
return new GridSpecification.fromRegularTiles(
tileWidth: tileWidth,
tileHeight: tileHeight,
columnCount: columnCount,
rowCount: rowCount,
columnSpacing: columnSpacing,
rowSpacing: rowSpacing,
padding: padding
);
}
bool shouldRelayout(MaxTileWidthGridDelegate oldDelegate) {
return maxTileWidth != oldDelegate.maxTileWidth
|| tileAspectRatio != oldDelegate.tileAspectRatio
|| super.shouldRelayout(oldDelegate);
}
double getMinIntrinsicWidth(BoxConstraints constraints, int childCount) {
return constraints.constrainWidth(0.0);
}
double getMaxIntrinsicWidth(BoxConstraints constraints, int childCount) {
return constraints.constrainWidth(maxTileWidth * childCount);
}
}
/// Parent data for use with [RenderGrid]
class GridParentData extends ContainerBoxParentDataMixin<RenderBox> {
/// Opaque data passed to the getChildPlacement method of the grid's [GridDelegate].
Object placementData;
String toString() => '${super.toString()}; placementData=$placementData';
}
/// Implements the grid layout algorithm
///
/// In grid layout, children are arranged into rows and columns in on a two
/// dimensional grid. The [GridDelegate] determines how to arrange the
/// children on the grid.
///
/// The arrangment of rows and columns in the grid cannot depend on the contents
/// of the tiles in the grid, which makes grid layout most useful for images and
/// card-like layouts rather than for document-like layouts that adjust to the
/// amount of text contained in the tiles.
///
/// Additionally, grid layout materializes all of its children, which makes it
/// most useful for grids containing a moderate number of tiles.
class RenderGrid extends RenderVirtualViewport<GridParentData> {
RenderGrid({
List<RenderBox> children,
GridDelegate delegate,
int virtualChildBase: 0,
int virtualChildCount,
Offset paintOffset: Offset.zero,
RenderObjectPainter overlayPainter,
LayoutCallback callback
}) : _delegate = delegate, _virtualChildBase = virtualChildBase, super(
virtualChildCount: virtualChildCount,
paintOffset: paintOffset,
overlayPainter: overlayPainter,
callback: callback
) {
assert(delegate != null);
addAll(children);
}
/// The delegate that controls the layout of the children.
GridDelegate get delegate => _delegate;
GridDelegate _delegate;
void set delegate (GridDelegate newDelegate) {
assert(newDelegate != null);
if (_delegate == newDelegate)
return;
if (newDelegate.runtimeType != _delegate.runtimeType || newDelegate.shouldRelayout(_delegate)) {
_specification = null;
markNeedsLayout();
}
_delegate = newDelegate;
}
void set mainAxis(Axis value) {
assert(() {
if (value != Axis.vertical)
throw new RenderingError('RenderGrid doesn\'t yet support horizontal scrolling.');
return true;
});
super.mainAxis = value;
}
int get virtualChildCount => super.virtualChildCount ?? childCount;
/// The virtual index of the first child.
///
/// When asking the delegate for the position of each child, the grid will add
/// the virtual child i to the indices of its children.
int get virtualChildBase => _virtualChildBase;
int _virtualChildBase;
void set virtualChildBase(int value) {
assert(value != null);
if (_virtualChildBase == value)
return;
_virtualChildBase = value;
markNeedsLayout();
}
void setupParentData(RenderBox child) {
if (child.parentData is! GridParentData)
child.parentData = new GridParentData();
}
double getMinIntrinsicWidth(BoxConstraints constraints) {
assert(constraints.debugAssertIsNormalized);
return _delegate.getMinIntrinsicWidth(constraints, virtualChildCount);
}
double getMaxIntrinsicWidth(BoxConstraints constraints) {
assert(constraints.debugAssertIsNormalized);
return _delegate.getMaxIntrinsicWidth(constraints, virtualChildCount);
}
double getMinIntrinsicHeight(BoxConstraints constraints) {
assert(constraints.debugAssertIsNormalized);
return _delegate.getMinIntrinsicHeight(constraints, virtualChildCount);
}
double getMaxIntrinsicHeight(BoxConstraints constraints) {
assert(constraints.debugAssertIsNormalized);
return _delegate.getMaxIntrinsicHeight(constraints, virtualChildCount);
}
double computeDistanceToActualBaseline(TextBaseline baseline) {
return defaultComputeDistanceToHighestActualBaseline(baseline);
}
GridSpecification get specification => _specification;
GridSpecification _specification;
int _specificationChildCount;
BoxConstraints _specificationConstraints;
void _updateGridSpecification() {
if (_specification == null
|| _specificationChildCount != virtualChildCount
|| _specificationConstraints != constraints) {
_specification = delegate.getGridSpecification(constraints, virtualChildCount);
_specificationChildCount = virtualChildCount;
_specificationConstraints = constraints;
}
}
void performLayout() {
_updateGridSpecification();
final Size gridSize = _specification.gridSize;
size = constraints.constrain(gridSize);
if (callback != null)
invokeLayoutCallback(callback);
final double gridTopPadding = _specification.padding.top;
final double gridLeftPadding = _specification.padding.left;
int childIndex = virtualChildBase;
RenderBox child = firstChild;
while (child != null) {
final GridParentData childParentData = child.parentData;
GridChildPlacement placement = delegate.getChildPlacement(_specification, childIndex, childParentData.placementData);
assert(placement.column >= 0);
assert(placement.row >= 0);
assert(placement.column + placement.columnSpan < _specification.columnOffsets.length);
assert(placement.row + placement.rowSpan < _specification.rowOffsets.length);
double tileLeft = gridLeftPadding + _specification.columnOffsets[placement.column];
double tileRight = gridLeftPadding + _specification.columnOffsets[placement.column + placement.columnSpan];
double tileTop = gridTopPadding + _specification.rowOffsets[placement.row];
double tileBottom = gridTopPadding + _specification.rowOffsets[placement.row + placement.rowSpan];
double childWidth = math.max(0.0, tileRight - tileLeft - _specification.columnSpacing);
double childHeight = math.max(0.0, tileBottom - tileTop - _specification.rowSpacing);
child.layout(new BoxConstraints(
minWidth: childWidth,
maxWidth: childWidth,
minHeight: childHeight,
maxHeight: childHeight
));
childParentData.offset = new Offset(tileLeft, tileTop);
childIndex += 1;
assert(child.parentData == childParentData);
child = childParentData.nextSibling;
}
}
}