flutter/packages/flutter_sprites/lib/src/physics_joint.dart
Hixie c7339de6bc Enable always_declare_return_types lint
And fix a zillion omissions this uncovered.
2016-03-09 17:57:39 -08:00

585 lines
17 KiB
Dart

part of flutter_sprites;
typedef void PhysicsJointBreakCallback(PhysicsJoint joint);
/// A joint connects two physics bodies and restricts their movements. Some
/// types of joints also support motors that adds forces to the connected
/// bodies.
abstract class PhysicsJoint {
PhysicsJoint(this._bodyA, this._bodyB, this.breakingForce, this.breakCallback) {
bodyA._joints.add(this);
bodyB._joints.add(this);
}
PhysicsBody _bodyA;
/// The first body connected to the joint.
///
/// PhysicsBody body = myJoint.bodyA;
PhysicsBody get bodyA => _bodyA;
PhysicsBody _bodyB;
/// The second body connected to the joint.
///
/// PhysicsBody body = myJoint.bodyB;
PhysicsBody get bodyB => _bodyB;
/// The maximum force the joint can handle before it breaks. If set to null,
/// the joint will never break.
final double breakingForce;
final PhysicsJointBreakCallback breakCallback;
bool _active = true;
box2d.Joint _joint;
PhysicsWorld _physicsWorld;
void _completeCreation() {
if (bodyA._attached && bodyB._attached) {
_attach(bodyA._physicsWorld);
}
}
void _attach(PhysicsWorld physicsNode) {
if (_joint == null) {
_physicsWorld = physicsNode;
_joint = _createB2Joint(physicsNode);
_physicsWorld._joints.add(this);
}
}
void _detach() {
if (_joint != null && _active) {
_physicsWorld.b2World.destroyJoint(_joint);
_joint = null;
_physicsWorld._joints.remove(this);
}
_active = false;
}
box2d.Joint _createB2Joint(PhysicsWorld physicsNode);
/// If the joint is no longer needed, call the the [destroy] method to detach
/// if from its connected bodies.
void destroy() {
_detach();
}
void _checkBreakingForce(double dt) {
if (breakingForce == null) return;
if (_joint != null && _active) {
Vector2 reactionForce = new Vector2.zero();
_joint.getReactionForce(1.0 / dt, reactionForce);
if (breakingForce * breakingForce < reactionForce.length2) {
// Destroy the joint
destroy();
// Notify any observer
if (breakCallback != null)
breakCallback(this);
}
}
}
}
/// The revolute joint can be thought of as a hinge, a pin, or an axle.
/// An anchor point is defined in global space.
///
/// Revolute joints can be given limits so that the bodies can rotate only to a
/// certain point using [lowerAngle], [upperAngle], and [enableLimit].
/// They can also be given a motor using [enableMotore] together with
/// [motorSpeed] and [maxMotorTorque] so that the bodies will try
/// to rotate at a given speed, with a given torque.
///
/// Common uses for revolute joints include:
/// - wheels or rollers
/// - chains or swingbridges (using multiple revolute joints)
/// - rag-doll joints
/// - rotating doors, catapults, levers
///
/// new PhysicsJointRevolute(
/// nodeA.physicsBody,
/// nodeB.physicsBody,
/// nodeB.position
/// );
class PhysicsJointRevolute extends PhysicsJoint {
PhysicsJointRevolute(
PhysicsBody bodyA,
PhysicsBody bodyB,
this._worldAnchor, {
this.lowerAngle: 0.0,
this.upperAngle: 0.0,
this.enableLimit: false,
PhysicsJointBreakCallback breakCallback,
double breakingForce,
bool enableMotor: false,
double motorSpeed: 0.0,
double maxMotorTorque: 0.0
}) : super(bodyA, bodyB, breakingForce, breakCallback) {
_enableMotor = enableMotor;
_motorSpeed = motorSpeed;
_maxMotorTorque = maxMotorTorque;
_completeCreation();
}
final Point _worldAnchor;
/// The lower angle of the limits of this joint, only used if [enableLimit]
/// is set to true.
final double lowerAngle;
/// The upper angle of the limits of this joint, only used if [enableLimit]
/// is set to true.
final double upperAngle;
/// If set to true, the rotation will be limited to a value between
/// [lowerAngle] and [upperAngle].
final bool enableLimit;
bool _enableMotor;
/// By setting enableMotor to true, the joint will automatically rotate, e.g.
/// this can be used for creating an engine for a wheel. For this to be
/// useful you also need to set [motorSpeed] and [maxMotorTorque].
bool get enableMotor => _enableMotor;
void set enableMotor(bool enableMotor) {
_enableMotor = enableMotor;
if (_joint != null) {
box2d.RevoluteJoint revoluteJoint = _joint;
revoluteJoint.enableMotor(enableMotor);
}
}
double _motorSpeed;
/// Sets the motor speed of this joint, will only work if [enableMotor] is
/// set to true and [maxMotorTorque] is set to a non zero value.
double get motorSpeed => _motorSpeed;
void set motorSpeed(double motorSpeed) {
_motorSpeed = motorSpeed;
if (_joint != null) {
box2d.RevoluteJoint revoluteJoint = _joint;
revoluteJoint.setMotorSpeed(radians(motorSpeed));
}
}
double _maxMotorTorque;
double get maxMotorTorque => _maxMotorTorque;
/// Sets the motor torque of this joint, will only work if [enableMotor] is
/// set to true and [motorSpeed] is set to a non zero value.
void set maxMotorTorque(double maxMotorTorque) {
_maxMotorTorque = maxMotorTorque;
if (_joint != null) {
box2d.RevoluteJoint revoluteJoint = _joint;
revoluteJoint.setMaxMotorTorque(maxMotorTorque);
}
}
box2d.Joint _createB2Joint(PhysicsWorld physicsNode) {
// Create Joint Definition
Vector2 vecAnchor = new Vector2(
_worldAnchor.x / physicsNode.b2WorldToNodeConversionFactor,
_worldAnchor.y / physicsNode.b2WorldToNodeConversionFactor
);
box2d.RevoluteJointDef b2Def = new box2d.RevoluteJointDef();
b2Def.initialize(bodyA._body, bodyB._body, vecAnchor);
b2Def.enableLimit = enableLimit;
b2Def.lowerAngle = lowerAngle;
b2Def.upperAngle = upperAngle;
b2Def.enableMotor = _enableMotor;
b2Def.motorSpeed = _motorSpeed;
b2Def.maxMotorTorque = _maxMotorTorque;
// Create joint
return physicsNode.b2World.createJoint(b2Def);
}
}
/// The prismatic joint is probably more commonly known as a slider joint.
/// The two joined bodies have their rotation held fixed relative to each
/// other, and they can only move along a specified axis.
///
/// Prismatic joints can be given limits so that the bodies can only move
/// along the axis within a specific range. They can also be given a motor so
/// that the bodies will try to move at a given speed, with a given force.
///
/// Common uses for prismatic joints include:
/// - elevators
/// - moving platforms
/// - sliding doors
/// - pistons
///
/// new PhysicsJointPrismatic(
/// nodeA.physicsBody,
/// nodeB.physicsBody,
/// new Offset(0.0, 1.0)
/// );
class PhysicsJointPrismatic extends PhysicsJoint {
PhysicsJointPrismatic(
PhysicsBody bodyA,
PhysicsBody bodyB,
this.axis, {
double breakingForce,
PhysicsJointBreakCallback breakCallback,
bool enableMotor: false,
double motorSpeed: 0.0,
double maxMotorForce: 0.0
}
) : super(bodyA, bodyB, breakingForce, breakCallback) {
_enableMotor = enableMotor;
_motorSpeed = motorSpeed;
_maxMotorForce = maxMotorForce;
_completeCreation();
}
/// Axis that the movement is restricted to (in global space at the time of
/// creation)
final Offset axis;
bool _enableMotor;
/// For the motor to be effective you also need to set [motorSpeed] and
/// [maxMotorForce].
bool get enableMotor => _enableMotor;
void set enableMotor(bool enableMotor) {
_enableMotor = enableMotor;
if (_joint != null) {
box2d.PrismaticJoint prismaticJoint = _joint;
prismaticJoint.enableMotor(enableMotor);
}
}
double _motorSpeed;
/// Sets the motor speed of this joint, will only work if [enableMotor] is
/// set to true and [maxMotorForce] is set to a non zero value.
double get motorSpeed => _motorSpeed;
void set motorSpeed(double motorSpeed) {
_motorSpeed = motorSpeed;
if (_joint != null) {
box2d.PrismaticJoint prismaticJoint = _joint;
prismaticJoint.setMotorSpeed(motorSpeed / _physicsWorld.b2WorldToNodeConversionFactor);
}
}
double _maxMotorForce;
/// Sets the motor force of this joint, will only work if [enableMotor] is
/// set to true and [motorSpeed] is set to a non zero value.
double get maxMotorForce => _maxMotorForce;
void set maxMotorForce(double maxMotorForce) {
_maxMotorForce = maxMotorForce;
if (_joint != null) {
box2d.PrismaticJoint prismaticJoint = _joint;
prismaticJoint.setMaxMotorForce(maxMotorForce / _physicsWorld.b2WorldToNodeConversionFactor);
}
}
box2d.Joint _createB2Joint(PhysicsWorld physicsNode) {
box2d.PrismaticJointDef b2Def = new box2d.PrismaticJointDef();
b2Def.initialize(bodyA._body, bodyB._body, bodyA._body.position, new Vector2(axis.dx, axis.dy));
b2Def.enableMotor = _enableMotor;
b2Def.motorSpeed = _motorSpeed;
b2Def.maxMotorForce = _maxMotorForce;
return physicsNode.b2World.createJoint(b2Def);
}
}
/// The weld joint attempts to constrain all relative motion between two bodies.
///
/// new PhysicsJointWeld(bodyA.physicsJoint, bodyB.physicsJoint)
class PhysicsJointWeld extends PhysicsJoint {
PhysicsJointWeld(
PhysicsBody bodyA,
PhysicsBody bodyB, {
double breakingForce,
PhysicsJointBreakCallback breakCallback,
this.dampening: 0.0,
this.frequency: 0.0
}
) : super(bodyA, bodyB, breakingForce, breakCallback) {
_completeCreation();
}
final double dampening;
final double frequency;
box2d.Joint _createB2Joint(PhysicsWorld physicsNode) {
box2d.WeldJointDef b2Def = new box2d.WeldJointDef();
Vector2 middle = new Vector2(
(bodyA._body.position.x + bodyB._body.position.x) / 2.0,
(bodyA._body.position.y + bodyB._body.position.y) / 2.0
);
b2Def.initialize(bodyA._body, bodyB._body, middle);
b2Def.dampingRatio = dampening;
b2Def.frequencyHz = frequency;
return physicsNode.b2World.createJoint(b2Def);
}
}
/// A pulley is used to create an idealized pulley. The pulley connects two
/// bodies to ground and to each other. As one body goes up, the other goes
/// down.
///
/// The total length of the pulley rope is conserved according to the initial
/// configuration.
///
/// new PhysicsJointPulley(
/// nodeA.physicsBody,
/// nodeB.physicsBody,
/// new Point(0.0, 100.0),
/// new Point(100.0, 100.0),
/// nodeA.position,
/// nodeB.position,
/// 1.0
/// );
class PhysicsJointPulley extends PhysicsJoint {
PhysicsJointPulley(
PhysicsBody bodyA,
PhysicsBody bodyB,
this.groundAnchorA,
this.groundAnchorB,
this.anchorA,
this.anchorB,
this.ratio, {
double breakingForce,
PhysicsJointBreakCallback breakCallback
}
) : super(bodyA, bodyB, breakingForce, breakCallback) {
_completeCreation();
}
final Point groundAnchorA;
final Point groundAnchorB;
final Point anchorA;
final Point anchorB;
final double ratio;
box2d.Joint _createB2Joint(PhysicsWorld physicsNode) {
box2d.PulleyJointDef b2Def = new box2d.PulleyJointDef();
b2Def.initialize(
bodyA._body,
bodyB._body,
_convertPosToVec(groundAnchorA, physicsNode),
_convertPosToVec(groundAnchorB, physicsNode),
_convertPosToVec(anchorA, physicsNode),
_convertPosToVec(anchorB, physicsNode),
ratio
);
return physicsNode.b2World.createJoint(b2Def);
}
}
/// The gear joint can only connect revolute and/or prismatic joints.
///
/// Like the pulley ratio, you can specify a gear ratio. However, in this case
/// the gear ratio can be negative. Also keep in mind that when one joint is a
/// revolute joint (angular) and the other joint is prismatic (translation),
/// and then the gear ratio will have units of length or one over length.
///
/// new PhysicsJointGear(nodeA.physicsBody, nodeB.physicsBody);
class PhysicsJointGear extends PhysicsJoint {
PhysicsJointGear(
PhysicsBody bodyA,
PhysicsBody bodyB, {
double breakingForce,
PhysicsJointBreakCallback breakCallback,
this.ratio: 1.0
}
) : super(bodyA, bodyB, breakingForce, breakCallback) {
_completeCreation();
}
/// The ratio of the rotation for bodyA relative bodyB.
final double ratio;
box2d.Joint _createB2Joint(PhysicsWorld physicsNode) {
box2d.GearJointDef b2Def = new box2d.GearJointDef();
b2Def.bodyA = bodyA._body;
b2Def.bodyB = bodyB._body;
b2Def.ratio = ratio;
return physicsNode.b2World.createJoint(b2Def);
}
}
/// Keeps a fixed distance between two bodies, [anchorA] and [anchorB] are
/// defined in world coordinates.
class PhysicsJointDistance extends PhysicsJoint {
PhysicsJointDistance(
PhysicsBody bodyA,
PhysicsBody bodyB,
this.anchorA,
this.anchorB, {
double breakingForce,
PhysicsJointBreakCallback breakCallback,
this.length,
this.dampening: 0.0,
this.frequency: 0.0
}
) : super(bodyA, bodyB, breakingForce, breakCallback) {
_completeCreation();
}
/// The anchor of bodyA in world coordinates at the time of creation.
final Point anchorA;
/// The anchor of bodyB in world coordinates at the time of creation.
final Point anchorB;
/// The desired distance between the joints, if not passed in at creation
/// it will be set automatically to the distance between the anchors at the
/// time of creation.
final double length;
/// Dampening factor.
final double dampening;
/// Dampening frequency.
final double frequency;
box2d.Joint _createB2Joint(PhysicsWorld physicsNode) {
box2d.DistanceJointDef b2Def = new box2d.DistanceJointDef();
b2Def.initialize(
bodyA._body,
bodyB._body,
_convertPosToVec(anchorA, physicsNode),
_convertPosToVec(anchorB, physicsNode)
);
b2Def.dampingRatio = dampening;
b2Def.frequencyHz = frequency;
if (length != null)
b2Def.length = length / physicsNode.b2WorldToNodeConversionFactor;
return physicsNode.b2World.createJoint(b2Def);
}
}
/// The wheel joint restricts a point on bodyB to a line on bodyA. The wheel
/// joint also optionally provides a suspension spring.
class PhysicsJointWheel extends PhysicsJoint {
PhysicsJointWheel(
PhysicsBody bodyA,
PhysicsBody bodyB,
this.anchor,
this.axis, {
double breakingForce,
PhysicsJointBreakCallback breakCallback,
this.dampening: 0.0,
this.frequency: 0.0
}
) : super(bodyA, bodyB, breakingForce, breakCallback) {
_completeCreation();
}
/// The rotational point in global space at the time of creation.
final Point anchor;
/// The axis which to restrict the movement to.
final Offset axis;
/// Dampening factor.
final double dampening;
/// Dampening frequency.
final double frequency;
box2d.Joint _createB2Joint(PhysicsWorld physicsNode) {
box2d.WheelJointDef b2Def = new box2d.WheelJointDef();
b2Def.initialize(
bodyA._body,
bodyB._body,
_convertPosToVec(anchor, physicsNode),
new Vector2(axis.dx, axis.dy)
);
b2Def.dampingRatio = dampening;
b2Def.frequencyHz = frequency;
return physicsNode.b2World.createJoint(b2Def);
}
}
/// The friction joint is used for top-down friction. The joint provides 2D
/// translational friction and angular friction.
class PhysicsJointFriction extends PhysicsJoint {
PhysicsJointFriction(
PhysicsBody bodyA,
PhysicsBody bodyB,
this.anchor, {
double breakingForce,
PhysicsJointBreakCallback breakCallback,
this.maxForce: 0.0,
this.maxTorque: 0.0
}
) : super(bodyA, bodyB, breakingForce, breakCallback) {
_completeCreation();
}
final Point anchor;
final double maxForce;
final double maxTorque;
box2d.Joint _createB2Joint(PhysicsWorld physicsNode) {
box2d.FrictionJointDef b2Def = new box2d.FrictionJointDef();
b2Def.initialize(
bodyA._body,
bodyB._body,
_convertPosToVec(anchor, physicsNode)
);
b2Def.maxForce = maxForce / physicsNode.b2WorldToNodeConversionFactor;
b2Def.maxTorque = maxTorque / physicsNode.b2WorldToNodeConversionFactor;
return physicsNode.b2World.createJoint(b2Def);
}
}
class PhysicsJointConstantVolume extends PhysicsJoint {
PhysicsJointConstantVolume(
this.bodies, {
double breakingForce,
PhysicsJointBreakCallback breakCallback,
this.dampening,
this.frequency
}
) : super(null, null, breakingForce, breakCallback) {
assert(bodies.length > 2);
_bodyA = bodies[0];
_bodyB = bodies[1];
_completeCreation();
}
final List<PhysicsBody> bodies;
final double dampening;
final double frequency;
box2d.Joint _createB2Joint(PhysicsWorld physicsNode) {
box2d.ConstantVolumeJointDef b2Def = new box2d.ConstantVolumeJointDef();
for (PhysicsBody body in bodies) {
b2Def.addBody(body._body);
}
b2Def.dampingRatio = dampening;
b2Def.frequencyHz = frequency;
return physicsNode.b2World.createJoint(b2Def);
}
}
Vector2 _convertPosToVec(Point pt, PhysicsWorld physicsNode) {
return new Vector2(
pt.x / physicsNode.b2WorldToNodeConversionFactor,
pt.y / physicsNode.b2WorldToNodeConversionFactor
);
}