flutter/packages/flutter_sprites/lib/src/physics_world.dart
Hixie c7339de6bc Enable always_declare_return_types lint
And fix a zillion omissions this uncovered.
2016-03-09 17:57:39 -08:00

441 lines
13 KiB
Dart

part of flutter_sprites;
enum PhysicsContactType {
preSolve,
postSolve,
begin,
end
}
typedef void PhysicsContactCallback(PhysicsContactType type, PhysicsContact contact);
/// A [Node] that performs a 2D physics simulation on any children with a
/// [PhysicsBody] attached. To simulate grand children, they need to be placed
/// in a [PhysicsGroup].
///
/// The PhysicsWorld uses Box2D.dart to perform the actual simulation, but
/// wraps its behavior in a way that is more integrated with the sprite node
/// tree. If needed, you can still access the Box2D world through the [b2World]
/// property.
class PhysicsWorld extends Node {
PhysicsWorld(Offset gravity) {
b2World = new box2d.World.withGravity(
new Vector2(
gravity.dx / b2WorldToNodeConversionFactor,
gravity.dy / b2WorldToNodeConversionFactor));
_init();
}
PhysicsWorld.fromB2World(this.b2World, this.b2WorldToNodeConversionFactor) {
_init();
}
void _init() {
_contactHandler = new _ContactHandler(this);
b2World.setContactListener(_contactHandler);
box2d.ViewportTransform transform = new box2d.ViewportTransform(
new Vector2.zero(),
new Vector2.zero(),
1.0
);
_debugDraw = new _PhysicsDebugDraw(transform, this);
b2World.debugDraw = _debugDraw;
}
/// The Box2D world used to perform the physics simulations.
box2d.World b2World;
_ContactHandler _contactHandler;
_PhysicsCollisionGroups _collisionGroups = new _PhysicsCollisionGroups();
List<PhysicsJoint> _joints = <PhysicsJoint>[];
List<box2d.Body> _bodiesScheduledForDestruction = <box2d.Body>[];
List<PhysicsBody> _bodiesScheduledForUpdate = <PhysicsBody>[];
/// If set to true, a debug image of all physics shapes and joints will
/// be drawn on top of the [SpriteBox].
bool drawDebug = false;
Matrix4 _debugDrawTransform ;
_PhysicsDebugDraw _debugDraw;
/// The conversion factor that is used to convert points in the physics world
/// node to points in the Box2D physics simulation.
double b2WorldToNodeConversionFactor = 10.0;
/// The gravity vector used in the simulation.
Offset get gravity {
Vector2 g = b2World.getGravity();
return new Offset(g.x, g.y);
}
void set gravity(Offset gravity) {
// Convert from points/s^2 to m/s^2
b2World.setGravity(new Vector2(gravity.dx / b2WorldToNodeConversionFactor,
gravity.dy / b2WorldToNodeConversionFactor));
}
/// If set to true, objects can fall asleep if the haven't moved in a while.
bool get allowSleep => b2World.isAllowSleep();
void set allowSleep(bool allowSleep) {
b2World.setAllowSleep(allowSleep);
}
/// True if sub stepping should be used in the simulation.
bool get subStepping => b2World.isSubStepping();
void set subStepping(bool subStepping) {
b2World.setSubStepping(subStepping);
}
void _stepPhysics(double dt) {
// Update transformations of bodies whose groups have moved
for (PhysicsBody body in _bodiesScheduledForUpdate) {
Node node = body._node;
node._updatePhysicsPosition(body, node.position, node.parent);
node._updatePhysicsRotation(body, node.rotation, node.parent);
}
_bodiesScheduledForUpdate.clear();
// Remove bodies that were marked for destruction during the update phase
_removeBodiesScheduledForDestruction();
// Assign velocities and momentum to static and kinetic bodies
for (box2d.Body b2Body = b2World.bodyList; b2Body != null; b2Body = b2Body.getNext()) {
// Fetch body
PhysicsBody body = b2Body.userData;
// Skip all dynamic bodies
if (b2Body.getType() == box2d.BodyType.DYNAMIC) {
body._lastPosition = null;
body._lastRotation = null;
continue;
}
// Update linear velocity
if (body._lastPosition == null || body._targetPosition == null) {
b2Body.linearVelocity.setZero();
} else {
Vector2 velocity = (body._targetPosition - body._lastPosition) / dt;
b2Body.linearVelocity = velocity;
body._lastPosition = null;
}
// Update angular velocity
if (body._lastRotation == null || body._targetAngle == null) {
b2Body.angularVelocity = 0.0;
} else {
double angularVelocity = (body._targetAngle - body._lastRotation) / dt;
b2Body.angularVelocity = angularVelocity;
body._lastRotation = 0.0;
}
}
// Calculate a step in the simulation
b2World.stepDt(dt, 10, 10);
// Iterate over the bodies
for (box2d.Body b2Body = b2World.bodyList; b2Body != null; b2Body = b2Body.getNext()) {
// Update visual position and rotation
PhysicsBody body = b2Body.userData;
if (b2Body.getType() == box2d.BodyType.KINEMATIC) {
body._targetPosition = null;
body._targetAngle = null;
}
// Update visual position and rotation
if (body.type == PhysicsBodyType.dynamic) {
body._node._setPositionFromPhysics(
new Point(
b2Body.position.x * b2WorldToNodeConversionFactor,
b2Body.position.y * b2WorldToNodeConversionFactor
),
body._node.parent
);
body._node._setRotationFromPhysics(
degrees(b2Body.getAngle()),
body._node.parent
);
}
}
// Break joints
for (PhysicsJoint joint in _joints) {
joint._checkBreakingForce(dt);
}
// Remove bodies that were marked for destruction during the simulation
_removeBodiesScheduledForDestruction();
}
void _removeBodiesScheduledForDestruction() {
for (box2d.Body b2Body in _bodiesScheduledForDestruction) {
// Destroy any joints before destroying the body
PhysicsBody body = b2Body.userData;
for (PhysicsJoint joint in body._joints) {
joint._detach();
}
// Destroy the body
b2World.destroyBody(b2Body);
}
_bodiesScheduledForDestruction.clear();
}
void _updatePosition(PhysicsBody body, Point position) {
if (body._lastPosition == null && body.type == PhysicsBodyType.static) {
body._lastPosition = new Vector2.copy(body._body.position);
body._body.setType(box2d.BodyType.KINEMATIC);
}
Vector2 newPos = new Vector2(
position.x / b2WorldToNodeConversionFactor,
position.y / b2WorldToNodeConversionFactor
);
double angle = body._body.getAngle();
if (body.type == PhysicsBodyType.dynamic) {
body._body.setTransform(newPos, angle);
} else {
body._targetPosition = newPos;
body._targetAngle = angle;
}
body._body.setAwake(true);
}
void _updateRotation(PhysicsBody body, double rotation) {
if (body._lastRotation == null)
body._lastRotation = body._body.getAngle();
Vector2 pos = body._body.position;
double newAngle = radians(rotation);
body._body.setTransform(pos, newAngle);
body._body.setAwake(true);
}
void _updateScale(PhysicsBody body, double scale) {
body._scale = scale;
if (body._attached) {
body._updateScale(this);
}
}
void addChild(Node node) {
super.addChild(node);
if (node.physicsBody != null) {
node.physicsBody._attach(this, node);
}
}
void removeChild(Node node) {
super.removeChild(node);
if (node.physicsBody != null) {
node.physicsBody._detach();
}
}
/// Adds a contact callback, the callback will be invoked when bodies collide
/// in the world.
///
/// To match specific sets bodies, use the [tagA] and [tagB]
/// which will be matched to the tag property that is set on the
/// [PhysicsBody]. If [tagA] or [tagB] is set to null, it will match any
/// body.
///
/// By default, callbacks are made at four different times during a
/// collision; preSolve, postSolve, begin, and end. If you are only interested
/// in one of these events you can pass in a [type].
///
/// myWorld.addContactCallback(
/// (PhysicsContactType type, PhysicsContact contact) {
/// print("Collision between ship and asteroid");
/// },
/// "Ship",
/// "Asteroid",
/// PhysicsContactType.begin
/// );
void addContactCallback(PhysicsContactCallback callback, Object tagA, Object tagB, [PhysicsContactType type]) {
_contactHandler.addContactCallback(callback, tagA, tagB, type);
}
void paint(Canvas canvas) {
if (drawDebug) {
_debugDrawTransform = new Matrix4.fromFloat64List(canvas.getTotalMatrix());
}
super.paint(canvas);
}
/// Draws the debug data of the physics world, normally this method isn't
/// invoked directly. Instead, set the [drawDebug] property to true.
void paintDebug(Canvas canvas) {
_debugDraw.canvas = canvas;
b2World.drawDebugData();
}
}
/// Contains information about a physics collision and is normally passed back
/// in callbacks from the [PhysicsWorld].
///
/// void myCallback(PhysicsContactType type, PhysicsContact contact) {
/// if (contact.isTouching)
/// print("Bodies are touching");
/// }
class PhysicsContact {
PhysicsContact(
this.nodeA,
this.nodeB,
this.shapeA,
this.shapeB,
this.isTouching,
this.isEnabled,
this.touchingPoints,
this.touchingNormal
);
/// The first node as matched in the rules set when adding the callback.
final Node nodeA;
/// The second node as matched in the rules set when adding the callback.
final Node nodeB;
/// The first shape as matched in the rules set when adding the callback.
final PhysicsShape shapeA;
/// The second shape as matched in the rules set when adding the callback.
final PhysicsShape shapeB;
/// True if the two nodes are touching.
final isTouching;
/// To ignore the collision to take place, you can set isEnabled to false
/// during the preSolve phase.
bool isEnabled;
/// List of points that are touching, in world coordinates.
final List<Point> touchingPoints;
/// The normal from [shapeA] to [shapeB] at the touchingPoint.
final Offset touchingNormal;
}
class _ContactCallbackInfo {
_ContactCallbackInfo(this.callback, this.tagA, this.tagB, this.type);
PhysicsContactCallback callback;
Object tagA;
Object tagB;
PhysicsContactType type;
}
class _ContactHandler extends box2d.ContactListener {
_ContactHandler(this.physicsNode);
PhysicsWorld physicsNode;
List<_ContactCallbackInfo> callbackInfos = <_ContactCallbackInfo>[];
void addContactCallback(PhysicsContactCallback callback, Object tagA, Object tagB, PhysicsContactType type) {
callbackInfos.add(new _ContactCallbackInfo(callback, tagA, tagB, type));
}
void handleCallback(PhysicsContactType type, box2d.Contact b2Contact, box2d.Manifold oldManifold, box2d.ContactImpulse impulse) {
// Get info about the contact
PhysicsBody bodyA = b2Contact.fixtureA.getBody().userData;
PhysicsBody bodyB = b2Contact.fixtureB.getBody().userData;
box2d.Fixture fixtureA = b2Contact.fixtureA;
box2d.Fixture fixtureB = b2Contact.fixtureB;
// Match callback with added callbacks
for (_ContactCallbackInfo info in callbackInfos) {
// Check that type is matching
if (info.type != null && info.type != type)
continue;
// Check if there is a match
bool matchA = (info.tagA == null) || info.tagA == bodyA.tag;
bool matchB = (info.tagB == null) || info.tagB == bodyB.tag;
bool match = (matchA && matchB);
if (!match) {
// Check if there is a match if we swap a & b
bool matchA = (info.tagA == null) || info.tagA == bodyB.tag;
bool matchB = (info.tagB == null) || info.tagB == bodyA.tag;
match = (matchA && matchB);
if (match) {
// Swap a & b
PhysicsBody tempBody = bodyA;
bodyA = bodyB;
bodyB = tempBody;
box2d.Fixture tempFixture = fixtureA;
fixtureA = fixtureB;
fixtureB = tempFixture;
}
}
if (match) {
// We have contact and a matched callback, setup contact info
List<Point> touchingPoints = null;
Offset touchingNormal = null;
// Fetch touching points, if any
if (b2Contact.isTouching()) {
box2d.WorldManifold manifold = new box2d.WorldManifold();
b2Contact.getWorldManifold(manifold);
touchingNormal = new Offset(manifold.normal.x, manifold.normal.y);
touchingPoints = <Point>[];
for (Vector2 vec in manifold.points) {
touchingPoints.add(new Point(
vec.x * physicsNode.b2WorldToNodeConversionFactor,
vec.y * physicsNode.b2WorldToNodeConversionFactor
));
}
}
// Create the contact
PhysicsContact contact = new PhysicsContact(
bodyA._node,
bodyB._node,
fixtureA.userData,
fixtureB.userData,
b2Contact.isTouching(),
b2Contact.isEnabled(),
touchingPoints,
touchingNormal
);
// Make callback
info.callback(type, contact);
// Update Box2D contact
b2Contact.setEnabled(contact.isEnabled);
}
}
}
void beginContact(box2d.Contact contact) {
handleCallback(PhysicsContactType.begin, contact, null, null);
}
void endContact(box2d.Contact contact) {
handleCallback(PhysicsContactType.end, contact, null, null);
}
void preSolve(box2d.Contact contact, box2d.Manifold oldManifold) {
handleCallback(PhysicsContactType.preSolve, contact, oldManifold, null);
}
void postSolve(box2d.Contact contact, box2d.ContactImpulse impulse) {
handleCallback(PhysicsContactType.postSolve, contact, null, impulse);
}
}